articleList

12-Flink自定义的Source 数据源案例-并行度调整结合WebUI

2025/03/13 posted in  Flink
Tags: 

  • 开启webui并设置不同的并行度
    public static void main(String[] args) throws Exception {

        //构建执行任务环境以及任务的启动的入口, 存储全局相关的参数
        //StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        env.setParallelism(2);

        DataStream<VideoOrder> videoOrderDS = env.addSource(new VideoOrderSource());

        DataStream<VideoOrder> filterDS = videoOrderDS.filter(new FilterFunction<VideoOrder>() {
            @Override
            public boolean filter(VideoOrder videoOrder) throws Exception {
                return videoOrder.getMoney() > 5;
            }
        }).setParallelism(3);

        filterDS.print().setParallelism(4);

        //DataStream需要调用execute,可以取个名称
        env.execute("source job");
    }
  • 数据流中最大的并行度,就是算子链中最大算子的数量,比如source 2个并行度,filter 4个,sink 4个,最大就是4
    60483365.png
    60491528.png